

NEW TOOLS FOR TREE DECAY DETECTION

1. Trees Are Remarkable Organisms 2. Trees are Subject to Decay Creating Risks 3. Effective Use of Decay Detection Tools 4. Tomorrow's Tools

3.04 Trillion Trees: (43% tropical; 24% dense boreal areas; 22% in temperate zones.) Losing 15 billion annually, 46% loss to land use change, deforestation

Chlorophyll and Hemoglobin

Whitish string-like cellulose adds strength and flexibility under tension; dark-colored lignin forms a rigid matrix of cell wall between the cellulose. Decay decomposes wood & strength.

Decay upward and inward

Monona Drive Honey Locust Failure May, 2005

Species	Radial stress wave velocity (m/s)	Radial stress wave transmission time (μs/ft
Beech	1670	183
Black fir	1480	206
Larch	1490	205
Linden	1690	180
Maple	1690	180
Oak	1620	188
Poplar	1140	267
Scotch fir	1470	207
Silver fir	1360	224
Spruce	1410	216

Reference stress wave velocity and

Tests and Tools to Measure

• Visual Tree Assessment

Tests and Tools to Measure

Fakopp
Microsecond
Timer Test

• Picus Sonic Wave Test

Tests and Tools to Measure

• Resistograph

Portable CT scanner Habermehl & Ridder (1976-8) using Cs-137

Fig. 3: Mobile CT-Scanner MCT 3

CT slice

Portable x-ray CT scanner Morio Onoe et al. (1984), University of Tokyo

Fig. 1. A portable CT measuring a Japanese cypress tro

