Is it practical to implement NGS technologies in NCPDN labs for virus detection

Dimitre Molloy

USDA ARS National Germplasm Resources Laboratory

What is NGS and how does it work?

Next Generation Sequencing Technology

- Routine detection of viruses and other pathogens
- Extremely sensitive
- Highly reliable
- Identify unknown or poorly characterized viruses
- Whole genomes sequencing (most feasible approach)
 - Pathogen diversity; mutations; new strains
 - Ability to improve detection techniques

NGS target

- Total RNA (or mRNA) or DNA
- siRNA
- dsRNA
- Virion Nucleic Acid

Sequence reads

25-50 million reads per sample,

~5-10% removed due to low quality

Length of reads: ~100 (<50-600)

Contig assembly

<100,000 to >750,000 contigs per sample Why so many?

Not all are useful: 500-10,000 nt long => 10-20,000 contigs

Sequence reads and contigs

Virus related contigs: o to >100 Plant virus related contigs

How about uncharacterized viruses

Next Generation Sequencing Technology: Why do it? Routine detection of viruses and other pathogens Extremely sensitive Highly reliable

